SolarHope

We're back baby!

Mar 31, 2008

More-Powerful Solar Cells



A new solar cell is 27 percent more efficient without being more expensive to make.
By Kevin Bullis of Technology Review

An MIT researcher has found a way to significantly improve the efficiently of an important type of silicon solar cells while keeping costs about the same. The technology is being commercialized by a startup in Lexington, MA, called 1366 Technologies, which today announced its first round of funding. Venture capitalists invested $12.4 million in the company.

1366 Technologies claims that it improves the efficiency--a measure of the electricity generated from a given amount of light--of multicrystalline silicon solar cells by 27 percent compared with conventional ones. The company's efficiency and cost claims are based on results from small solar cells (about two centimeters across) made in the lab of Emanuel Sachs, a professor of mechanical engineering at MIT, who is one of the company's founders. 1366 Technologies is building a pilot-scale manufacturing plant that will make full-sized solar cells (about 15 centimeters across). Within a year, the company will decide whether its pilot-plant results justify building a factory for commercial production, Sachs says.

Commercial solar cells made from multicrystalline silicon are normally far less efficient than more expensive ones made from single-crystal silicon, but they're cheaper. The 27 percent improvement will bring multicrystalline cells to efficiencies about the same as single-crystal cells--around 19.5 percent--at the lower costs. So, if the technology successfully scales up, Sachs says, it could significantly bring down the cost of solar electricity. Sachs says that today, solar cells cost about $2.10 per watt generated. When manufactured at a commercial scale, the first cells incorporating his new technology will cost $1.65 per watt. Planned improvements will bring down this cost to about $1.30 a watt, he says. To compete with coal, the cost will need to come down to about $1 a watt, something that Sachs predicts can be achieved by 2012 with further improvements in antireflection coatings and other anticipated advances.

Read the rest of this Article at original site




Labels:

Mar 13, 2008

Toward Cheaper, Robust Solar Cells




Cheap and easy-to-make dye-sensitized solar cells are still in the early stages of commercial production. Meanwhile, their inventor, Michael Gratzel, is working on more advanced versions of them. In a paper published in the online edition of Angewandte Chemie, Gratzel, a chemistry professor at the École Polytechnique Fédérale de Lausanne in Switzerland, presents a version of dye-sensitized cells that could be more robust and even cheaper to make than current versions.

Dye-sensitized solar cells consist of titanium oxide nanocrystals that are coated with light-absorbing dye molecules and immersed in an electrolyte solution, which is sandwiched between two glass plates or embedded in plastic. Light striking the dye frees electrons and creates "holes"--the areas of positive charge that result when electrons are lost. The semiconducting titanium dioxide particles collect the electrons and transfer them to an external circuit, producing an electric current.

These solar cells are cheaper to make than conventional silicon photovoltaic panels. In principle, they could be used to make power-generating windows and building facades, and they could even be incorporated into clothing. (See "Window Power" and "Solar Cells for Cheap.") A Lowell, MA-based company called Konarka is manufacturing dye-sensitized solar cells in a limited quantity. But the technology still has room for improvement.

In existing versions of the solar cells, the electrolyte solution uses organic solvents. When the solar cells reach high temperatures, the solvent can evaporate and start to leak out. Researchers are now looking at a type of material that may make a better electrolyte: ionic liquids, which are currently used as industrial solvents. These liquids do not evaporate at solar-cell operating temperatures. "Ionic liquids are less volatile and more robust," says Bruce Parkinson, a chemistry professor at Colorado State University.

New dyes are also being investigated. In commercial cells, the dyes are made of the precious metal ruthenium. But researchers have recently started to consider organic molecules as an alternative. "Organic dyes will become important because they can be cheaply made," Gratzel says. In the long run, they might also be more abundant than ruthenium.

Read the rest of this Article at original site


Mar 5, 2008

Nanosolar’s Breakthrough - Solar Now Cheaper than Coal





Their mission: to deliver cost-efficient solar electricity.
The Nanosolar company was founded in 2002 and is working to build the world’s largest solar cell factory in California and the world’s largest panel-assembly factory in Germany. They have successfully created a solar coating that is the most cost-efficient solar energy source ever. Their PowerSheet cells contrast the current solar technology systems by reducing the cost of production from $3 a watt to a mere 30 cents per watt. This makes, for the first time in history, solar power cheaper than burning coal.

These coatings are as thin as a layer of paint and can transfer sunlight to power at amazing efficiency. Although the underlying technology has been around for years, Nanosolar has created the actual technology to manufacture and mass produce the solar sheets. The Nanosolar plant in San Jose, once in full production in 2008, will be capable of producing 430 megawatts per year. This is more than the combined total of every other solar manufacturer in the U.S.

Nanosolar, Inc. prides themselves on being the “Third Wave” of solar technology. The “First Wave” began over three decades ago with the introduction of silicon wafer based solar cells. This technology bore high material and production costs with poor capital efficiency. Silicon does not absorb light very well and therefore, the silicon wafers must be very thick. Also, the wafers are extremely fragile. Their need for intricate handling complicates processing all the way up to the final panel product.

Read original article containing full content

Feb 26, 2008

Solar Power to Rule in 20 Years, Futurists Say

By Robin Lloyd, LiveScience Senior Editor
He predicted the fall of the Soviet Union. He predicted the explosive spread of the Internet and wireless access.

Now futurist and inventor Ray Kurzweil is part of distinguished panel of engineers that says solar power will scale up to produce all the energy needs of Earth's people in 20 years.

There is 10,000 times more sunlight than we need to meet 100 percent of our energy needs, he says, and the technology needed for collecting and storing it is about to emerge as the field of solar energy is going to advance exponentially in accordance with Kurzweil's Law of Accelerating Returns. That law yields a doubling of price performance in information technologies every year.

Kurzweil, author of "The Singularity Is Near" and "The Age of Intelligent Machines," worked on the solar energy solution with Google Co-Founder Larry Page as part of a panel of experts convened by the National Association of Engineers to address the 14 "grand challenges of the 21st century," including making solar energy more economical. The panel's findings were announced here last week at the annual meeting of the American Association for the Advancement of Science.

Read original article containing full content



We're back baby!

SolarHope is happy to announce its new official home at Blogger.com, this is only after terrible treatment at WordPress these past several months. Sorry for any inconviences/bugs you may have experienced on the old site and I hope that we continue to have the strong support we did on the old site.
Google does things right (blogger is an affliliate of Google if I am not mistaken)

This new site still needs some minor work but it is functional, please leave any suggestive comments.

Labels: